14. Алгоритмы решения задач на графах.

Граф представляет собой упорядоченную пару множеств вершин или узлов (V) и ребер (E). G = (V, E).

Неупорядоченная пара вершин называется ребром, а упорядоченная пара - дугой. Граф, содержащий только ребра, называется неориентированным; граф, содержащий только дуги, - ориентированным, или орграфом. Вершины, соединенные ребром, называются смежными. Ребра, имеющие общую вершину, также называются смежными.

Выбор соответствующей структуры данных для представления графа имеет принципиальное значение при разработке эффективных алгоритмов. При решении задач используются следующие четыре основных способа: матрица инциденций; матрица смежности; списки связи и перечни ребер. Исходный граф задается матрицей смежности и матрицей весов. Результат также явл-ся графом и задается матрицей смежности. Выборка нач. узла опред. индексом входа в матрицу, проще всего его установить в 1.

Поиск в глубину

Идея метода. Поиск начинается с некоторой фиксированной вершины v. Рассматривается вершина u, смежная с v. Она выбирается. Процесс повторяется с вершиной u. Если на очередном шаге мы работаем с вершиной q и нет вершин, смежных с q и не рассмотренных ранее (новых), то возвращаемся из вершины q к вершине, которая была до нее. В том случае, когда это вершина v, процесс просмотра закончен.

Пример. На левом рисунке приведен исходный граф, а на правом рисунке у вершин в скобках указана та очередность, в которой вершины графа просматривались в процессе поиска в глубину.

Поиск в ширину

Метод обхода и разметки вершин графа. Поиск в ширину выполняется в следующем порядке: началу обхода s приписывается метка 0, смежным с ней вершинам — метка 1. Затем поочередно рассматривается окружение всех вершин с метками 1, и каждой из входящих в эти окружения вершин приписываем метку 2 и т. д.

Если исходный граф связный, то поиск в ширину пометит все его вершины. Легко увидеть, что с помощью поиска в ширину можно также занумеровать вершины, нумеруя вначале вершины с меткой 1, затем с меткой 2 и т. д.

Поиск в ширину реализуется с помощью структуры очередь. Для этого занесем в очередь исходную вершину. Затем будем работать, пока очередь не опустеет, таким образом: выберем элемент из очереди и добавим все смежные ему элементы, которые еще не использованы.

Алгоритм Дейкстры Алгоритм Дейкстры решает задачу о кратчайших путях из одной вершины для взвешенного ориентированного графа G = (V, E) с исходной вершиной s, в котором веса всех ребер неотрицательны.

Каждой вершине из V сопоставим метку — минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Метка самой вершины a полагается равной 0, метки остальных вершин — бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.

Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u, имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u, назовем соседями этой вершины. Для каждого соседа вершины u, кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.

Сделать бесплатный сайт с uCoz